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Abstract. Being invisible ad libitum has long captivated the popular imagination, particularly in terms of
safeguarding modern high-end instruments from potential threats. Decades ago, the advent of metamaterials
and transformation optics sparked considerable interest in invisibility cloaks, which have been mainly
demonstrated in ground and waveguide modalities. However, an omnidirectional flying cloak has not been
achieved, primarily due to the challenges associated with dynamic synthesis of metasurface dispersion.
We demonstrate an autonomous aeroamphibious invisibility cloak that incorporates a suite of perception,
decision, and execution modules, capable of maintaining invisibility amidst kaleidoscopic backgrounds and
neutralizing external stimuli. The physical breakthrough lies in the spatiotemporal modulation imparted on
tunable metasurfaces to sculpt the scattering field in both space and frequency domains. To intelligently
control the spatiotemporal metasurfaces, we introduce a stochastic-evolution learning that automatically
aligns with the optimal solution through maximum probabilistic inference. In a fully self-driving experiment,
we implement this concept on an unmanned drone and showcase adaptive invisibility in three canonical
landscapes—sea, land, and air—with a similarity rate of up to 95%. Our work extends the family of invisibility
cloaks to flying modality and inspires other research on material discoveries and homeostatic meta-devices.
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1 Introduction
The ability of rendering an object invisible will bestow humans
with high survival value to disguise themselves and protect
a broad range of instruments in spacecraft circuits, electronic
shielding, and radomes.1 In physics, the essence of an invisibil-
ity cloak aims to suppress the electromagnetic (EM) scattering
of a hidden object or to reconstruct its scattering characteristics
to imitate those generated by the pure background. Over the
centuries, substantial efforts have been devoted to achieving

this long-standing dream, including early adoption of EM
absorption2 and camouflage clothing.3 Two decades ago, the
seminal works of transformation optics and metamaterials
kicked off the modern prelude to invisibility cloaks.4 Based
on the form invariance of Maxwell’s equations, transformation
optics guide the flow of light around the hidden object by adding
a bulky metamaterial shell.5 Despite the theoretical elegance, its
practical implementation is hampered by the extreme metama-
terial compositions with both anisotropy and inhomogeneity.6

Concurrently, other invisibility schemes, such as ultrathin meta-
surface cloaks7 and zero-refractive-index invisible channels,8

have been proposed with respective strengths and weaknesses
tailored for specific application scenarios.9–11 In particular, the
easy access, negligible thickness, and low insertion loss of
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metasurface cloaks have rapidly gained wide popularity in both
academia and industry.12–14

However, the state-of-the-art methods and existing invisibil-
ity cloaks suffer from a common limitation: they work in single
direction, prior-defined EM illumination, and stationary back-
ground because the active metasurfaces have restricted reflec-
tion/transmission states, and the amplitude and phase are
coupled.15 Such a fascinating trait would usher in a new era
of intelligent cloaks that cater to dynamic, nondeterministic
surrounding landscape in real-world applications. However,
achieving this goal will encounter multifaceted challenges from
fundamental physical principles and intelligent algorithms, to an
all-in-one system. First, a majority of invisibility cloaks are
idealized to work in a single and homogeneous background,
but the fact is not like that. Switching to different scenarios, such
as deserts, sea, and air, will bring distinct scattering character-
istics that deteriorate the well-defined cloaking effect. Although
active metasurfaces provide a dynamic range of reflection/trans-
mission responses, they are more about phase regulation while
the amplitude keeps unchanged or entangled with the phase.16

Second, unearthing the elusive relationship among metasurface
cloak, EM illumination, and the surrounding environment plays
a pivotal role for intelligent cloaks. For a customer-defined
cloaking effect, brute-force search in tandem with lengthy
case-by-case full-wave simulations is suboptimal because it
inevitably degrades the working efficiency of the invisibility
cloak.17–22 So far, although deep learning has been substantially
applied for the inverse design of subwavelength meta-atoms, the
generalization to the entire large-scale metadevices is not readily
followed due to the dimensional curse and intractable non-
uniqueness issue. Third, a fully self-driving intelligent cloak ne-
cessitates the buildup of a highly complex perception–decision–
execution system, including full-context awareness of incoming
waves and environment, and the attitude recognition of cloak.1

It is imperative to iron out these scientific and engineering
challenges to foster an authentic practical-oriented autonomous
invisibility cloak, far beyond proof-of-concept demonstrations.

Here we present a probabilistic inference-based autonomous
aeroamphibious cloak capable of adapting to kaleidoscopic
environments and neutralizing external stimuli. The idea is
rooted in the platform of an unmanned drone, adorned with ul-
trathin reconfigurable metasurfaces at microwave levels. We im-
part spatiotemporal modulation into metasurfaces to synthesize
a great number of equivalent reflection states to cover the entire
phase diagram, which lays a physical foundation to integrate
exotic functionalities and versatile cloaking modalities.23,24

To automate the invisible drone, we introduce a generation-
elimination network, termed as stochastic-evolution learning,
to swiftly output the control command for spatiotemporal meta-
surfaces. The network consists of a conditional variational au-
toencoder (CVAE) to automatically generate a constellation of
output candidates and a forward neural network to eliminate all
inferior ones. The strong built-in stochastic sampling capability
effectively addresses complex, nonuniqueness correspondence
in inverse design (the accuracy reaches 97.8%). In the experi-
ment, an all-in-one invisible drone freely flies across a conical
detection region with near-zero backscattering, appearing as if
nothing existed. Amidst an amphibious background, we bench-
mark the invisible drone by arbitrarily disguising it into pure
background or arbitrary user-defined illusive patterns (the
similarity is up to 95%). Our work heralds a new genus of
sea–land–air intelligent cloak and spurs a myriad of hitherto

inaccessible concepts to off-the-shelf applications,25–29 such as
distributed metasurfaces and intersatellite communication.

2 Methods

2.1 Training of the Generation-Elimination Network

In the example of Fig. 3, 100,000 data are collected with meta-
surfaces spectra. The data are shuffled, where 80% are blindly
selected as the training set and the remaining 20% are used for
validation and testing. The generation-elimination network is
trained using Python version 3.7.11 and TensorFlow framework
version 2.7.0 (Google Inc.) on a server (GeForce RTX 4090
GPU and an AMD Ryzen Threadripper PRO 5975WX 32-
Cores with 128 GB RAM, running on a Windows operating
system). Different optimization strategies, e.g., the dimension
of the latent space, have been tried in Supplementary Notes
5 and 6 in the Supplementary Material.

2.2 Architecture of the Intelligent Invisible Drone

For the intelligent invisible drone, we use the Jetson Xavier NX
as the core processing platform. First, the Jetson reads the de-
tected information from the three onboard sensors (camera, EM
detector, and gyroscope). The detected information, together
with on-demand cloaking pictures, is input into the pretrained
generation-elimination network to output different temporal
sequences that meet the invisible requirement. The temporal
sequence is then conveyed into the metasurface inclusions by
RS485 bus. Here the stm32f103 chip is used as the controller
of the metasurface system, and the signal lines of the metasur-
face board are connected to the I/O of the stm32. According to
the temporal sequence, the stm32 outputs 3.3 or 0 V in real time.

3 Results

3.1 System Architecture of the Autonomous
Aeroamphibious Cloak

The ultimate stage for an invisibility cloak should be directed to
cluttered, dynamic, and unseen environments, and neutralize
various detection means. It remains out of reach for almost
all existing metamaterial-based invisibility cloaks, as they are
too idealistic to be generalized into a practical implementation,
and thus are restricted to fixed environments and morphologies.
In this regard, illustrated in Fig. 1 is our proposed autonomous
aeroamphibious cloak, equipped with perception, decision, and
action modules. An autonomous invisible drone takes off from
sea level, hovers in the sky, and lands in the mountains, during
which it maintains invisibility at all times. The foe radars cannot
detect it or identify it as another dissimilar object. Such vision is
similar to many natural animals, such as the chameleon and oc-
topus, that automatically modify their body colors or textures to
match the habitat. We decorate the unmanned drone with ultra-
thin reconfigurable metasurfaces to dynamically tune the local
reflection spectra. When the tuning speed is comparable to the
EM illumination frequency, reconfigurable metasurfaces will
transmute into time-varying or spatiotemporal metasurfaces.
The space–time duality in Maxwell’s equations reveals that
applying time modulation to the reflection spectra can expand
the ability of sculpting EM waves to both space and frequency
domains. Many exotic effects are facilitated, such as the break-
down of Lorentz reciprocity and Doppler-like frequency shift.30–32
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Therefore, we consider spatiotemporal metasurfaces as the
physical basis to enable a more powerful intelligent invisibility
cloak.

Under the hood of the invisible drone, a perception module is
indispensable to sense the surrounding environment and its po-
sition/state in real time, mainly including three onboard detec-
tors. A home-made intelligent EM detector is utilized to precept
the incident angle, frequency, and polarization of incoming
waves;33 see Supplementary Note 9 in the Supplementary
Material. A gyroscope is installed for sensing the attitude, ac-
celeration speed, and angular velocity of the drone itself, and a
camera is mounted for obtaining the surrounding environment.
All of this information is fed into a pretrained deep-learning
model (decision module) to orchestrate the spatiotemporal meta-
surface inclusion (action module) and make a fast reaction. Any
customized scattering appearance can be directly actualized by
the invisible drone without human intervention, for example,
camouflaging the drone into a rabbit in the mountains.34 So
far, although a portion of works have embedded active compo-
nents and responsive materials into metasurfaces to actualize
tunable invisibility cloaks,35 they still necessitate external
assistance for a specific task. Very recently, we proposed the
concept of an intelligent cloak, yet, the proof-of-concept exper-
imental demonstration only works against high-reflection
backgrounds.15 There is still a large distance to genuinely trans-
pose an intelligent cloak into mind-bending applications.

3.2 Design and Working Mechanism of Spatiotemporal
Metasurfaces

In microwave, we consider spatiotemporal metasurfaces con-
sisting of an asymmetric hexagonal metallic patch and two
metallic strips mounted on the dielectric substrate, backed by
a ground plane [Fig. 2(a)]. By applying different direct-current
bias voltages to the two welded electronic positive–intrinsic–
negative (PIN) diodes, the reflection response of the meta-atom
can be dynamically switched among four discrete states, i.e.,
(on, on), (on, off), (off, on), and (off, off). We optimize the
geometries of the meta-atom to attain an interval of π∕2 among
the four states while maintaining the amplitude as high as pos-
sible, so as to guarantee a high manipulation efficiency. The
period of the meta-atom is ultimately chosen as 40 mm; see
Supplementary Note 1 in the Supplementary Material for the
details of the meta-atom. As shown in Fig. 2(b), it is clear that
the phase difference of the four states uniformly distributes at
3.1 GHz (labeled as f0, corresponding to the working wave-
length λ0 ¼ 96.77 mm); the amplitude is higher than 0.95.

Illuminated under a plane wave with the frequency f0, spa-
tiotemporal metasurfaces can generate a multitude of harmonic
waves by imposing periodical time-varying series. According
to Fourier theory, periodic square-wave series can be decom-
posed into the summation of a series of orthogonal sine func-
tions with different angular frequencies.24 The length of the

Fig. 1 Schematic of autonomous aeroamphibious invisibility cloak. The invisible drone is inte-
grated with perception, decision, and action modules to allow it to self-adapt to kaleidoscopic
environments and offset external detection without human intervention. The perception module
mainly includes a custom-built EM detector for capturing incoming waves, a gyroscope for sensing
attitude, acceleration speed, and angular velocity, and a camera for obtaining the surrounding
environment. The detected information, together with user-defined cloaking pictures, is input into
a pretrained deep-learning model to instruct the drone to make action at a millisecond scale.
According to the output, the reconfigurable spatiotemporal metasurface veneers globally manipu-
late the scattering wave by directly controlling the temporal sequence of each meta-atom. As a
consequence, when freely shuttling among sea, land, and air, the drone can maintain invisibility at
all times or disguise itself into other illusive scattering appearances. Such an aeroamphibious
cloak constitutes a big milestone to assist conventional proof-of-concept metamaterials-based
invisibility cloaks to go out of laboratories.
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square-wave series (L) determines the frequency of the har-
monic waves, and its specific sequence determines the reflection
response; see Supplementary Note 2 in the Supplementary
Material. We infer that the modulation period T ¼ L × T0,
and the m’th harmonic frequency is f0 þmΔf, where T0 is
the time duration of the basic gate function and Δf ¼ 1∕T.
If L becomes 1, the spatiotemporal metasurfaces will be degen-
erated to the basic spatial gradient metasurfaces. In this study,
we consider L ¼ 8, and on the basis of the four discrete reflec-
tion states, it can synthetize 81 equivalent states at the frequency
f0, as shown in Fig. 2(c). In fact, these equivalent states are
virtual working states derived from the Fourier coefficients of
the square-wave series, which is conceptualized to facilitate the
following inverse design. We can observe that the equivalent
states occupy almost the entire complex plane, offering us more
degrees of freedom. By carefully designing the square-wave
series, the reflection waves at center and harmonic frequency
can be manipulated synergistically. To benchmark the superior-
ity of spatiotemporal metasurfaces, we carry out a numerical
experiment on far-field customization with 8 × 8 metasurfaces.
As shown in Fig. 2(d), we randomly set up a far-field target and
mimic it with spatial-only and spatiotemporal metasurfaces us-
ing a genetic algorithm. It turns out that the structural similarity
(SSIM) is improved from 88.64% to 94.03%, indicating that

spatiotemporal metasurfaces hold a strong ability to manipulate
EM waves.

3.3 Stochastic-Evolution Learning

We then discuss how to unlock the intricate relationship be-
tween the spatiotemporal metasurfaces that cover the unmanned
drone and the generated scattering field. To this end, “brute-
force” search and heuristic optimization methods call for a vast
number of numerical simulations and inevitably encounter
many failed cases that are often discarded, leading to a huge
waste of computing resources. Probably, the designed spatio-
temporal metasurfaces are satisfactory, but they are innately
flawed by the trial-and-error manner and the convergence speed.
Moreover, in practice, complex radio devices are required to
monitor the far field, making it hard to be generalized into
a convenient strategy. Recently, deep learning is poised to
expedite on-demand photonic design and mitigate the imperfec-
tions in conventional methods.17–22 Its unique advantages lie in
the data-driven nature to allow a computational model to dis-
cover useful information from given data and thus carry out
tasks without explicit programmed and procedural instructions.
The past decade has witnessed a proliferation of deep-learning-
enabled forward/inverse design, spectral correlation, intelligent

Fig. 2 Design and working mechanism of spatiotemporal metasurfaces. (a) The spatiotemporal
metasurfaces are composed of an array of reconfigurable meta-atoms at microwave, each of
which incorporates two PIN diodes. The specific geometries of metasurfaces are located in
Supplementary Note 1 in the Supplementary Material. By feeding periodic time-varying voltage
sequences, the spatiotemporal metasurfaces generate a series of reflected harmonic waves with
customized scattering pattern and power distribution. (b) Reflection response of metasurfaces by
applying different bias voltages across the loaded diodes. Two diodes correspond to four reflected
states. At 3.1 GHz, the reflected phase has a uniform interval, while the reflected amplitude keeps
high. (c) Synthetic reflection states at center frequency. By controlling the time-varying sequences
(the period is 8) of the meta-atom, a constellation of equivalent reflection states is synthesized to
occupy the complex plane. Here we want to underscore that one time-varying series can only
induce one equivalent state; however, one equivalent state can be induced by more-than-one
time-varying series. (d) Comparison between spatial and spatiotemporal metasurfaces. For a
given three-dimensional scattering pattern, the spatiotemporal modulation allows a high degree
of freedom to mimic the ground truth with the SSIM of 94.03%, in contrast to 88.64% by spatial-
only modulation (with only four initial reflected states). Here conventional GA is adopted to opti-
mize the profiles of metasurfaces. SSIM, structural similarity and GA, genetic algorithm.
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metadevices, and latent physics discovery with different net-
work architectures.

Despite these exciting achievements, it is a big challenge to
make them applicable for our work due to the following reasons.
First, the nonuniqueness (one-to-many) issue is ubiquitous in
inverse design, meaning that different metasurface distributions
may generate the same or highly similar far field. This is diffi-
cult for an orthodox neural network to converge because conflict
training samples will be found. Although tandem networks can
alleviate the nonuniqueness issue by relaxing the converging
requirement, it does not fundamentally solve it and there are
still conflicting gradients.36 Second, almost all related works are
based on the default premise that the input should be given in a
complete form. Yet, the practice is not always like that. In this
case, if the missing part is artificially repaired, the output result
will be largely contingent on the stochastic repaired versions.
Third, in most cases, we prefer to have multiple viable solutions,

rather than a single solution. This way, the model will become
more agile and feature redemption ability if the output seems to
be wrong or has another special preference.

To empower the intelligent invisible drone, we propose a
stochastic-evolution learning (generation-elimination network)
that contains two cascaded networks, the generation network
(CVAE) and the elimination network (fully connected neural
network), as depicted in Fig. 3(a). To facilitate the understand-
ing, we label the spatiotemporal metasurfaces distribution as x
(the input) and the far-field pattern as y (the label). In addition,
the latent variable z is introduced to build up the probabilistic
relationship between x and y.37,38 CVAE, composed of
a recognition module, a latent space, and a reconstruction mod-
ule, aims to acquire the intractable probability distribution and
produce a family of candidates, rather than a single-valued map-
ping. For a given far-field pattern, the generation network serves
as a producer to manufacture metasurface constellation, and the

Fig. 3 Architecture of stochastic-evolution learning that drives the autonomous invisible drone.
(a) The proposed network consists of two cascaded networks, namely, the generation network
and the elimination network. The CVAE-based generation network, composed of a recognition
module, a latent space, and a reconstruction module, is used to produce diverse candidates,
and the elimination network, a fully connected neural network, is launched to filter all inferior can-
didates. The layer-level illustration of the network and complete training process are given in
Supplementary Note 5 in the Supplementary Material. The 10 sets of Gaussian variational param-
eters generated from the preceding layer of the recognition module constitute the latent space.
(b) Latent space visualization. For each point in the extracted Gaussian distribution, the output
metasurface distribution is retrieved by concatenating the sampled point (i.e., latent variable) with
the far-field pattern (i.e., label information) and then going through the reconstruction module.
(c) Test instances. The deep-learning prediction is filtered by the elimination network to retain
the best one. One prominent advantage is that such a framework can effectively address the
nonuniqueness issue in inverse design and provide users with more than one answer.
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elimination network acts as an inspector to pick out the optimal
one. Such a process is similar to biological evolution in nature,
thus termed as stochastic-evolution learning. In the training
phase, we first train the elimination network (x → y), which
is a single-valued function without the nonuniqueness issue.
In the second step, we freeze the elimination network and attach
it to the generation network. The input x and the label informa-
tion y are encoded by the recognition module and give birth
to 10 sets of Gaussian variational parameters φxi ¼ ðμxi ; σ2xiÞ,
constituting the latent space. The key point is that, the true pos-
terior distribution pθðzjx; yÞ of the latent variable z conditioned
on x and y is trained to approach the prior probability pθðzÞ ∼
N ð0; IÞ because it is imitated by the approximate posterior
qφðzjx; yÞ and φ is the variational parameters of multivariate
Gaussian distribution. Then the latent Gaussian variables are
sampled from the latent space and decoded into the recon-
structed output x0. They are finally retrieved into y0 by the elimi-
nation network. The spectral difference between y and y0 is
calculated as the prediction loss (Supplementary Note 5 in the
Supplementary Material). As an example, we consider that the
spatiotemporal metasurfaces encompass 10 columns. In the last
step of the inference phase, the round operation is carried out to

enforce the output to match 81 equivalent states before final
elimination; see Fig. S7 in the Supplementary Material. After
rounding, the best candidate is selected, reaching an accuracy
of 97.68%. Figure 3(b) visualizes the latent space with a
t-distributed stochastic neighbor embedding (t-SNE approach39)
to reduce the dimension from ten to two and compress the
high-dimensional data y into continuous one-dimensional data
e1 using an autoencoder. Whatever e1 is assigned, a Gaussian
distribution will be extracted, which accords with the predefined
standard Gaussian prior distribution pθðzÞ ∼N ð0; IÞ, and each
point can be decoded into a spatiotemporal metasurface distri-
bution.

3.4 Experimental Measurement for the Flying Invisible
Drone

Figure 4(b) shows the experimental picture of the intelligent
invisible drone, which is adorned by four veneers of spatiotem-
poral metasurfaces. The top panel has 10 columns, the bottom
panel has 10 columns, and each lateral panel has 8 columns.
Every column (incorporating 10 meta-atoms for top panel and
11 meta-atoms for other panels) along the y direction shares

Fig. 4 Experimental measurement of autonomous invisible drone flying in the sky.
(a) Experimental setup of the intelligent invisible drone outside the laboratory. The invisible drone
freely flies in the sky and passes through a conical detection region excited by a transmitting an-
tenna, during which three antennas detect the scattering waves in real time. The dotted curve
shows the flight trajectory. VNA, vector network analyzer. (b) Photograph of intelligent invisible
drone. (c), (d) Simulation results when the cloaked/bare drone is impinged by an obliquely incident
wave. Evidently, the bare drone produces strong scattering field that exposes it to foe radar, while
the cloaked drone largely absorbs the incident wave. (e) Experimental time-varying electric field by
the three receivers. Interestingly, the signal remains almost stable and matches with the back-
ground when the cloaked drone flies from the left to the right, in stark contrast to the erratic fluc-
tuation in the uncloaked case (Video 1, mp4, 28.9 MB [URL: https://doi.org/10.1117/1.AP.6.1
.016001.s1]; Video 2, mp4, 22.4 MB [URL: https://doi.org/10.1117/1.AP.6.1.016001.s2]).
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the same bias voltage. The drone has the dimension of about
55 cm × 62 cm × 60 cm, and the loading capacity of 15 kg. We
integrate the pretrained deep-learning model into Jetson Xavier
to promptly send out instructions to the spatiotemporal
metasurfaces according to the detected information. The mi-
crowave EM detector is composed of a four-port wideband
coplanar antenna distributed along a hexadecagonal array.
For an incoming wave, the induced surface voltages are fed
into the machine-learning model for simultaneous acquisition
of frequency, direction of arrival, and polarization;33 see
Supplementary Note 9 in the Supplementary Material. The de-
sign and result about the camera and gyroscope are detailed in
Supplementary Notes 7 and 8 in the Supplementary Material,
respectively. Note that for a complete cycle, the reaction is
completed on a millisecond time scale, in which the EM de-
tection takes up the most time.

We carry out the experiment at the outdoor test site. The air-
borne drone glides through the sky and passes through a conical
detection region formed by a transmitting antenna, during which
multiple receiving antennas located at random positions monitor

the scattering wave in real time. The feasibility is assessed in
both real-world flight and numerical simulation. In the simula-
tion [Fig. 4(c)], the cloaked drone hardly produces scattering
waves because the spatiotemporal metasurfaces are tailored
to operate at the original point of Fig. 2(c) (ideally, zero reflec-
tivity). In stark contrast, the bare drone generates strong scatter-
ing waves to render it discernible [Fig. 4(d)]. In the experiment,
the drone is formulated to take off from the lake, enter the coni-
cal region (t ¼ 2 to 8 s), and land on the right. For the cloaked
drone, the time-varying scattering signal sensed by the three
receivers remains almost stable, as if there was nothing flying
through the conical region [Fig. 4(e)]. However, the bare drone
makes the detected signal fluctuate dramatically, distinct from
that of the background; see full dynamics in Videos 1 and 2. The
measurement is conducted at the working frequency of around
3.1 GHz. One may conceive that the spatiotemporal metasurfa-
ces also produce other harmonic waves to expose the drone. Yet,
the amplitudes of harmonics are actually very small, which in
return can also be engineered to produce a Doppler cloaking
effect.31

Fig. 5 Experimental demonstration of autonomous invisible drone amidst amphibious back-
ground. (a) Schematic illustration of the intelligent invisible drone when it lands on grassland.
Eight receiving antennas are randomly distributed along the arc to detect the surrounding scat-
tered wave. The right insets show different scenes, including sand and sea. γ is the tilt angle of the
drone. Scenes 4 and 5 show the illusive purpose enabled by the invisible drone that reconfigures
itself as a giraffe and a shark. (b) Experimental results of a cloaked drone, in comparison with the
pure background and bare drone. The relative height of the colored circle represents the electric
field strength. The higher the circle location is, the larger the E -field strength is. Here the results are
quantified with the Pearson correlation coefficient to depict the similarity between the background
and the cloaked/bare drone. The cloaked drone is well blended into the background with the
average similarity of about 90%.
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3.5 Autonomous Invisible Drone against an Amphibious
Background

We further assess the performance of the intelligent invisible
drone against kaleidoscopic terrains (e.g., grassland, sand,
and sea). The goal is to conceal the drone from the background
or camouflage it as other objects. Figure 5(a) schematically
illustrates the experimental setup, where eight receiving
antennas are spatially distributed along the arc to detect the scat-
tering wave. The concrete operation procedure is discussed in
Supplementary Note 12 in the Supplementary Material. In each
terrain, the intelligent invisible drone perches with a random
tilt attitude (γ) to benchmark the robustness. The experimental
results are shown in Fig. 5(b), and eight circles represent the
detected value by the eight antennas. Obviously, in scenes 1,
2, and 3, the detected electric value of the cloaked drone with
the attitudes γ ¼ 0 deg ∕ − 10 deg ∕20 deg is consistent with
that of the background, distinct from that of the bare drone.
For an illustrative purpose, we employ the Pearson correlation
coefficient29 to elucidate the similarity between the background
and the cloaked/bare drone. The performance of the invisible
drone is revealed with an accuracy of over 84%, in striking con-
trast with the case of the bare drone (about 40% or worse). In
addition, other user-defined illusive scattering patterns can also
be successfully reached with the intelligent invisible drone, for
example, a giraffe on the grassland and a shark in the sea [scenes
4 and 5 in Fig. 5(a)]. The high accuracy in scenes 4 and 5 further
highlights the versatility and scalability of our intelligent drone.

4 Conclusion
To sum up, we have demonstrated how data science converges
with spatiotemporal metasurfaces to boost a fully intelligent
invisibility cloak that is able to self-adapt to kaleidoscopic envi-
ronments and offset various detection manners. On the technical
side, a self-driving invisible drone equipped with sensing, de-
cision, and actuation ingredients has been achieved to maintain
invisible and customize on-demand scattering behaviors against
the paradigmatic background of sea, land, and air. The built-in
generation-elimination network acts like a savvy commander to
unlock the intricate EM waves–metasurfaces interaction, also
blazing an “off-piste” path for real-time inverse design of
one-to-many and many-to-many correspondences. Amid mount-
ing invisibility cloaks, our conclusive experiment evidence
highlights iconic advancements of an intelligent invisible drone,
bypassing tiresome human intervention and sculpting scattering
field in space and time. The platform can be tailored to combine
with wide bandwidth40 and gain metasurfaces41 to usher in a
surrealistic intelligent cloak.

The age of intelligent cloak and intelligent metasurfaces is
just dawning. Endeavors in achieving this goal have been
embodied throughout streamlining photonics design, capturing
latent physics, and automating metadevices. Our work points
the way toward the revamped paradigm of the intelligent cloak,
inciting a flurry of new classes of intelligent metadevices that
adopt spatiotemporally controlled structures for advanced on-
demand functionalities. In the long term, we envision that the
knowledge among foggy scenarios can be migrated by sharing
common experiences in transfer technique,42 and the new break-
throughs of deep learning greatly improve the robustness in
data-scare and model-agnostic cases.43 Finally, the outcomes
could have ramifications in a broad range of applications, such

as cross-wavelength imaging, energy harvesting, and wireless
communication.44–46
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